SKD NEW STANDARD COACHING INSTITUTE	39 to 100
---	--

Ist & IInd Floor, Skylark Building, Near Leela Cinema, Nawal Kishore Road, Hazratganj, Lucknow. **Call : 7080111592, 7080111595**

MM : 120

Class-XI JEE

TIME : 60 MINUTES

NOTE: There are three sections, Physics, Chemistry and Maths. Each section carries 10 questions with four marks each and all are compulsory.

01.	PHYSIC The number of signification	S ant figures in 0.06900	S _{05.} D	During a projectile mo height equals the horiz angle of projetcion with (1) tan ⁻¹ (1) (3) tan ⁻¹ (3)	tion if the maximum contal range, then the the horizontal is $(2) \tan^{-1}(2)$ $(4) \tan^{-1}(4)$
	(1) 5	(2) 4	w of	A black of words t 1 kg	is noting on a smooth
	(3) 2	(4) 3	00.	horizontal plane If it is	struck by a jet of water
			T	at the rate of 2 kg s ⁻¹	and at the speed of
02.	The slope of the velo	city- time graph for	Α	10 m s ⁻¹ , then the initia	al acceleration of the
	(1) positive			block is	
	(1) positive		A	$(1) 15 \mathrm{ms}^{-2}$	(2) 10 m s^{-2}
	(2) negative (3) zero		R	$(3) 2.5 \text{ ms}^{-2}$	$(4) 5 \text{ ms}^{-2}$
	(4) can be positive, neg	ative or zero		A car of mass m is n	noving up through a
	(1)	,	c 07.	frictionless platform in	clined at angle 0 . The
03.	Three different objects	s of mass $m^1 : m^2 : m^3$	0	acceleration of the cari	
	are allowed to fall from	rest and from the same	C	$(1) \operatorname{mg} \sin \Theta$	$(2) \operatorname{mg} \cos \Theta$
	point O along three diffe	erent frictionless path.	н	$(3) \operatorname{osin} \Delta$	$(4) \operatorname{g} \cos \theta$
	The speed of the three	e objects on reaching	1 N 08.	A ball whose kinetic er	ergy is E is projected
(1) $m_1 : m_2 : m_3$ (2) $m_1 : 2m_2 : 3m_3$		(2) m : 2m : 3m	G	at an angle of 30° to the	he horizontal. AT the
			highest point of its flight, the kinetic energy of		
(3	$(3) 1 \cdot 1 \cdot 1 \qquad (4) \frac{1}{-} : \frac{1}{-} : \frac{1}{-}$	$(4) \xrightarrow{1} : \xrightarrow{1} : \xrightarrow{1}$		the ball is	
	(0)1111	$m_1 m_2 m_3$	S	(1) E/2	(2) E
			T	(3) 3E/2	(4) zero
04.	What is the angle betw	veen $\hat{i} + \hat{j} + \hat{k}$ and \hat{j} ?		The kinetic marger of	a body of mass 1 bo
(1) 0 (2) 45°		U U9.	and momentum of 6 N	i ne kinetic energy of a body of mass 4 kg	
	(3) 60°	(4) None of these	Ţ	(1) 3.5 J	(2) 5.5 J
			E	(3) 2.5 J	(4) 4.5 J

ROUGH WORK

1

- 10. Choose the correct expression for power.
 - $(2) \frac{1}{2} \vec{F} \cdot \vec{v}^2$ (1) $\vec{F}_{.\vec{v}}$
 - (3) $\vec{F}_{\vec{t}}$ (4) $\vec{F} \times \vec{v}$

- 10 g of hydrogen and 64 g of oxygen were 11. filled in a steel vessel and exploded. D Amount of water produced in this reaction will be (1) 3 mol (2)4 mol
 - (2) 1 mol (4) 2 mol
- The electronic configuration of Cu (atomic 12. S Т number 29) is (1) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$ Α Ν
 - (2) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$
 - (3) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6 5s^2 5p^1$
 - (4) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6 3d^{10}$
- 13. The number of spherical nodes in 3p orbitals is/are (1) one (2) three
 - (3) none (4) two
- Which of the following orders of ionic radii is 14. correctly represented? (2) $Na^+ > F^- > O^{2-}$ $(1) H^{-} > H > H^{+}$
 - $(4) Al^{3+} > Mg^{2+} > N^{3+}$ (3) $F^- > O^{2-} > Na^+$
- The correct geometry and hybridization for S 15. т XeF_4 are I T (1) octahedral, $sp^3 d^2$ (2) trigonal bipyramidal, sp³ d U (3) planar triangle, $sp^3 d^3$ т Е
 - (4) square planar, $sp^3 d^2$.

- Decreasing order of stability of 16. O_2, O_2^-, O_2^+ and O_2^{2-} is (1) $O_2^{2-} > O_2^{-} > O_2^{-} > O_2^{+}$ (2) $O_2 > O_2^+ > O_2^{--} > O_2^{--}$ (3) $O_2^- > O_2^2 > O_2^+ > O_2^+$
 - (4) $O_2^+ > O_2 > O_2^- > O_2^{2-}$
- 17. If the bond energies of H-H, Br-Br and H-Br are 433,192, and 364 kJ mol⁻¹ respectively, the ΔH° for the reaction

$H_{2(g)} + Br_{2(g)} \rightarrow 2$	2HBr _(g) is
(1) -261 kJ	(2) +103 kJ
(3) +261 kJ	(4) -103 kJ

- 18. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50L. The change in internal energy ΔU of the gas in joule will be (1) -500 J (2) -505 J (3) +505 J (4) 1136.25 J
- 19. Conjugate acid of NH_2^- is (1) NH_4OH (2) NH_4^+ (3) NH⁻₂ (4) NH₂

For the reaction, $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$, 20. the equilibrium constant is K₁. The equilibrium constant is K_2 for the reaction, $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$ What is K for the reaction, $NO_{2(g)} \rightleftharpoons N_{2(g)} + O_{2(g)}$?

(1)
$$\frac{1}{2K_1K_2}$$
 (2) $\frac{1}{4K_1K_2}$
(3) $\left[\frac{1}{K_1K_2}\right]^{1/2}$ (4) $\frac{1}{K_1K_2}$

ROUGH WORK

Ν

Е

w

D

Α

R

D

С

0

A C

Н

L

Ν

G

L

Ν

- 21. Domain of $f(x) = \sqrt{4x x^2}$ is (1) R - [0, 4] (2) R - (0, 4) (3) (0, 4) (4) [0, 4]
- 22. A relation R is defined from $\{2,3,4,5\}$ to $\{3,6,7,10\}$ by xRy \Leftrightarrow x is relatively prime to y. Then, domain of R is (1) $\{2,3,4\}$ (2) $\{3,5\}$ (2) $\{3,5\}$ (3) $\{2,3,4\}$ (4) $\{2,3,4,5\}$
- 23. The value of tan3A tan2A tanA is equal to (1) tan3A tan2A tanA
 (2) -tan3A tan2A tanA
 (3) tanA tan2A tan2A tan 3A tan3A tanA
 (4) None of these
- 24. Let A and B be acute angles such that $\sin A = \sin^2 B$ and $2\cos^2 A = 3\cos^2 B$. Then A is equal to
 - (1) $\frac{\pi}{4}$ (2) $\frac{\pi}{6}$
 - (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{2}$
- 25. If z = x + iy lies in the third quadrant, then $\frac{z}{z}$ also lies in the third quadrant if (1) x > y > 0 (2) x < y < 0
- (3) y < x < 0 (4) y > x > 026. Simplify $i^{n+100} + i^{n+50} + i^{n+48} + i^{n+46}$ (1) 0 (2) 1

(4)3

- 27. If $3 \le 3t 18 \le 18$, then which one of the following is true?
 - (1) $15 \le 2t + 1 \le 20$ (2) $8 \le t < 20$ (3) $8 \le t + 1 \le 13$ (4) $21 \le 3t \le 24$
- 28. Solve the inequality $2x 5 \le \frac{(4x 7)}{3}$
 - (1) $x \in (-\infty, 4)$ (2) $x \in (-\infty, 4]$ (3) $x \in (-\infty, 8]$ (4) $x \in (-\infty, -4)$
- 29. The sum of the digits in the unit's place of all the numbers formed with the help of 3,4,5 and 6 taken all at a time is (1) 422
 - (1) 432 (2) 108 (3) 36 (4) 18
- 30. The number of positive integers less than 40,000 that can be formed by using all the digits 1,2,3,4 and 5 is equal to
 (1) 24

(1) 24	(2) 78
(3) 32	(4) 72

ROUGH WORK

Ν

C O A

C H I N

G

I

Ν

S T I T U

T E

(3)2