Class-XI JEE
TIME : 60 MINUTES

> NOTE: There are three sections, Physics, Chemistry and Maths.
> Each section carries 10 questions with four marks each and all are compulsory.

PHYSICS

1. The number of significant figures in 0.06900 is
(1) 5
(2) 4
(3) 2
(4) 3
2. The slope of the velocity- time graph for retarded motion is
(1) positive
(2) negative
(3) zero
(4) can be positive, negative or zero
3. Three different objects of mass $\mathrm{m}^{1}: \mathrm{m}^{2}: \mathrm{m}^{3}$ are allowed to fall from rest and from the same point O along three different frictionless path. The speed of the three objects on reaching the ground will be in the ratio of
(1) $m_{1}: m_{2}: m_{3}$
(2) $\mathrm{m}_{1}: 2 \mathrm{~m}_{2}: 3 \mathrm{~m}_{3}$
(3) $1: 1: 1$
(4) $\frac{1}{m_{1}}: \frac{1}{m_{2}}: \frac{1}{m_{3}}$
4. What is the angle between $\hat{i}+\hat{j}+\hat{k}$ and \hat{j} ?
(1) 0
(2) 45°
(3) 60°
(4) None of these
5. During a projectile motion if the maximum height equals the horizontal range, then the angle of projetcion with the horizontal is
(1) $\tan ^{-1}(1)$
(2) $\tan ^{-1}(2)$
(3) $\tan ^{-1}(3)$
(4) $\tan ^{-1}(4)$
6. A block of weight 4 kg is resting on a smooth horizontal plane. If it is struck by a jet of water at the rate of $2 \mathrm{~kg} \mathrm{~s}^{-1}$ and at the speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$, then the initial acceleration of the block is
(1) $15 \mathrm{~ms}^{-2}$
(2) $10 \mathrm{~m} \mathrm{~s}^{-2}$
(3) $2.5 \mathrm{~ms}^{-2}$
(4) $5 \mathrm{~ms}^{-2}$
7. A car of mass m is moving up through a frictionless platform inclined at angle θ. The acceleration of the car is
(1) $m g \sin \theta$
(2) $\mathrm{mg} \cos \theta$
(3) $\operatorname{gsin} \theta$
(4) $g \cos \theta$
8. A ball whose kinetic energy is E , is projected at an angle of 30° to the horizontal. AT the highest point of its flight, the kinetic energy of the ball is
(1) $\mathrm{E} / 2$
(2) E
(3) $3 \mathrm{E} / 2$
(4) zero
9. The kinetic energy of a body of mass 4 kg and momentum of 6 Ns will be
(1) 3.5 J
(2) 5.5 J
(3) 2.5 J
(4) 4.5 J
10. Choose the correct expression for power.
(1) $\vec{F} \cdot \vec{v}$
(2) $\frac{1}{2} \vec{F} \cdot \vec{v}^{2}$
(3) $\vec{F} . \vec{t}$
(4) $\vec{F} \times \vec{v}$

CHEMISTRY

11. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded.
Amount of water produced in this reaction will be
(1) 3 mol
(2) 4 mol
(2) 1 mol
(4) 2 mol
12. The electronic configuration of Cu (atomic number 29) is
(1) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$
(2) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
(3) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 p^{6} 5 s^{2} 5 p^{1}$
(4) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$
13. The number of spherical nodes in $3 p$ orbitals is/are
(1) one
(2) three
(3) none
(4) two
14. Which of the following orders of ionic radii is correctly represented?
(1) $\mathrm{H}^{-}>\mathrm{H}>\mathrm{H}^{+}$
(2) $\mathrm{Na}^{+}>\mathrm{F}^{-}>\mathrm{O}^{2-}$
(3) $\mathrm{F}^{-}>\mathrm{O}^{2-}>\mathrm{Na}^{+}$
(4) $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{N}^{3-}$
15. The correct geometry and hybridization for XeF_{4} are
(1) octahedral, $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(2) trigonal bipyramidal, $\mathrm{sp}^{3} \mathrm{~d}$
(3) planar triangle, $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(4) square planar, $\mathrm{sp}^{3} \mathrm{~d}^{2}$.
16. Decreasing order of stability of
$\mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{+}$and O_{2}^{2-} is
(1) $\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
(2) $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}$
(3) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}$
(4) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
17. If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ are 433,192 , and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, the $\Delta \mathrm{H}^{\circ}$ for the reaction
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$ is
(1) -261 kJ
(2) +103 kJ
(3) +261 kJ
(4) - 103 kJ
18. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy ΔU of the gas in joule will be
(1) -500 J
(2) -505 J
(3) +505 J
(4) 1136.25 J
19. Conjugate acid of NH_{2}^{-}is
(1) $\mathrm{NH}_{4} \mathrm{OH}$
(2) NH_{4}^{+}
(3) NH_{2}^{-}
(4) NH_{3}
20. For the reaction, $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction, $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$ What is K for the reaction, $\mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$?
(1) $\frac{1}{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}$
(2) $\frac{1}{4 \mathrm{~K}_{1} \mathrm{~K}_{2}}$
(3) $\left[\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right]^{1 / 2}$
(4) $\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$

MATHS

21. Domain of $f(x)=\sqrt{4 x-x^{2}}$ is
(1) $\mathrm{R}-[0,4]$
(2) $\mathrm{R}-(0,4)$
(3) $(0,4)$
(4) $[0,4]$
22. A relation R is defined from $\{2,3,4,5\}$ to $\{3,6,7,10\}$ by $x R y \Leftrightarrow x$ is relatively prime to y. Then, domain of R is
(1) $\{2,3,4\}$
(2) $\{3,5\}$
(3) $\{2,3,4\}$
(4) $\{2,3,4,5\}$
23. The value of $\tan 3 \mathrm{~A}-\tan 2 \mathrm{~A}-\tan \mathrm{A}$ is equal to
(1) $\tan 3 \mathrm{~A} \tan 2 \mathrm{~A} \tan \mathrm{~A}$
(2) $-\tan 3 \mathrm{~A} \tan 2 \mathrm{~A} \tan \mathrm{~A}$
(3) $\tan \mathrm{A} \tan 2 \mathrm{~A}-\tan 2 \mathrm{~A} \tan 3 \mathrm{~A}-\tan 3 \mathrm{~A} \tan \mathrm{~A}$
(4) None of these
24. Let A and B be acute angles such that $\sin \mathrm{A}=\sin ^{2} \mathrm{~B}$ and $2 \cos ^{2} \mathrm{~A}=3 \cos ^{2} \mathrm{~B}$. Then A is equal to
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
25. If $\mathrm{z}=\mathrm{x}+$ iy lies in the third quadrant, then $\frac{\bar{z}}{z}$ also lies in the third quadrant if
(1) $x>y>0$
(2) $x<y<0$
(3) $y<x<0$
(4) $y>x>0$
26. Simplify $i^{n+100}+i^{n+50}+i^{n+48}+i^{n+46}$
(1) 0
(2) 1
(3) 2
(4) 3
27. Solve the inequality $2 x-5 \leq \frac{(4 x-7)}{3}$
(1) $x \in(-\infty, 4)$
(2) $x \in(-\infty, 4]$
(3) $x \in(-\infty, 8]$
(4) $x \in(-\infty,-4)$
28. The sum of the digits in the unit's place of all the numbers formed with the help of $3,4,5$ and 6 taken all at a time is
(1) 432
(2) 108
(3) 36
(4) 18
29. The number of positive integers less than 40,000 that can be formed by using all the digits $1,2,3,4$ and 5 is equal to
(1) 24
(2) 78
(3) 32
(4) 72
